Product Description for RBS 6601
Contents:

1 Introduction ... 3
 1.1 RBS 6601 – Main remote Solution ... 4
 1.2 Safe, Smart and Sound Going Forward ... 4

2 RBS 6601 Hardware Architecture .. 5
 2.1 RBS 6601 Main Unit ... 6
 2.2 Remote Radio Unit ... 10
 2.3 Optical Interface Link ... 12
 2.4 Site Solutions ... 12

3 Applications for RBS 6601 ... 13
 3.1 Metropolitan Indoor Site .. 13
 3.2 Suburban Shelter Site .. 14
 3.3 Highway Coverage Site .. 15
 3.4 In-building Coverage Solution .. 16

4 Configurations .. 17
 4.1 Radio Configurations .. 17
 4.2 Digital Unit Configurations ... 20

5 Technical Specifications ... 21
 5.1 RRU, Supported standards .. 21
 5.2 Power Options .. 22
 5.3 Dimensions ... 22
 5.4 Weight ... 22

6 Environmental Capabilities ... 23
 6.1 Safety Standards .. 23
 6.2 Other Standards and Requirements .. 23

7 Abbreviations .. 25
1 Introduction

The RBS 6000 base station family is designed to meet the increasingly complex challenges facing operators today. RBS 6000 is built with tomorrow’s technology and at the same provide backwards-compatibility with the highly successful RBS 2000 and RBS 3000 product lines. RBS 6000 base stations offer a seamless, integrated and environmentally friendly solution and a safe, smart and sound roadmap for whatever tomorrow holds.

![Figure 1 RBS 6000 base station family](image)

RBS 6000 Series Key Features:

- **Path to sustainability:** The RBS 6000 Series ensures a smooth migration to new functionality and new technologies with existing sites and cabinets, thus providing a path to sustained revenues and profits.

- **Power on demand:** Reengineering the power supply and fully integrating it into the system were key objectives in designing the RBS 6000 series. The intelligent power supply provides power on demand that is exactly matched to what is needed at any given moment, thus ensuring that power consumption is kept to an absolute minimum.

- **Multi-standard:** All RBS 6000 base stations support multiple radio technologies.

- **Integrated simplicity:** New multi-purpose cabinets, an innovative common building practice for all components, modular design and an extremely high level of integration bring the functionality and capacity of an entire site down to the size of a cabinet.
1.1 RBS 6601 – Main remote Solution

RBS 6601 is a Main Remote solution, optimized to deliver high radio performance for efficient cell planning in a wide range of indoor and outdoor applications. The Main Remote RBS, in which each RRU is located near an antenna, reduces feeder losses and enables the system to use the same high-performance network features at lower output power, thereby lowering power consumption and both capital and operational expenditure. Up to twelve Remote Radio Units (RRU) can be connected to a Main Unit (MU) to match any site requirements. The small, lightweight units are easily carried to site and offer simple and discrete installation where space and access are decisive issues.

1.2 Safe, Smart and Sound Going Forward

The Main Remote concept is designed to support all technologies in virtually any combination. This means that timing in network expansion is less critical and that there is less risk in investment decisions, since base band and RRU capacity can be added as it is needed for the technology that is in demand.

Like the other members of the RBS 6000 family, the Main Remote RBS 6601 provides a common transport network solution that supports a wide range of technologies.
2 RBS 6601 Hardware Architecture

The Main–Remote solution has the similar architecture as the other products in the RBS 6000 family.

The main Remote Solution is divided into a Main Unit (MU) and multiple Remote Radio Unit (RRU) that are connected to the MU through optical fiber cables.
2.1 RBS 6601 Main Unit

The RBS 6601 Main Unit is indoor specified.

2.1.1 RBS 6601 - Indoor Main Unit

The RBS 6601 Main Unit is designed for indoor environments, preferably mounted in a 19-inch rack. One DUW or two DUG/DUL can be housed in one RBS 6601 Main Unit.

Some of the key characteristics of the RBS 6601 Main Unit are:

- Power distribution of -48 VDC to Digital Units
- Climate system including built-in fans and control part

In addition to the above RBS 6601 Main Unit also provides a limited number of built-in customer alarm connections as well as connection to an external Support Alarm Unit (SAU).

![Figure 4 RBS 6601 Main Unit with DUG/DUL](image)
2.1.2 **Digital Unit for GSM**

The Digital Unit GSM, DUG 20 can control up to 12 GSM carriers. If more than 12 TRXs are required, then an additional DUG can be installed in the RBS 6601 Main Unit and synchronized with the other DUG in the Main Unit.

The DUG supports the cross-connection of individual time slots to specific TRXs and extracts the synchronization information from the Pulse-Code Modulation (PCM) link to generate a timing reference for the RBS.

The DUG 20 supports:

- E1/T1 transmission interface
- Baseband processing
- Link Access Procedures on D-Channel (LAPD) concentration / multiplexing
- Abis optimization
- Multi-drop (cascading)
- Synchronized radio network, through an external GPS receiver
- Transceiver Group (TG) synchronization
- Site LAN
2.1.3 Digital Unit for WCDMA

The Digital Unit WCDMA (DUW) comes in three variants, DUW 10/20/30, depending on capacity demand.

The DUW contains the baseband, control, and switching, as well as the lub and Mub interfaces. The DUW can handle different time-varying traffic mixes consisting of voice circuit-switched data, packet-switched data, and high-speed data such as High Speed Packet Access (HSPA).

Baseband resources are pooled in the DUW and the number of Channel Elements (CE) and high-speed data capacity can be optimized to fit operator requirements for user type and number of services.

The baseband capacity is pooled independently of sectors and frequencies. Two baseband pools can exist (two DUW). Each DUW is then housed in one 19”, 1.5U RBS 6601 Main Unit. The two DUW in two separate 19” 1.5U RBS 6601 Main Units can be configured as one RBS node.

The DUW stabilizes the clock signal extracted from the transport network connection or optional external GPS equipment and uses it to synchronize the RBS.

The DUW provides:

- 100/1000 Base-T Ethernet
- Channelised STM-1 transport network interface
- Four IMA capable E1/T1/J1 ports

The DUW can connect to RRU22, RRUW or RRUS.
2.1.4 Digital Unit for LTE

The DUL contains the baseband, control, and switching, as well as the S1 and Mub interfaces for LTE RBS. The DUL supports different time-varying traffic mixes over the LTE high-speed data interface.

Baseband resources are pooled in the DUL and the high-speed data capacity can be optimized to fit operator requirements for user type and number of services.

The baseband capacity is pooled independently of sectors and frequencies, and up to two baseband pools can exist (two DUL) in one 19” 6601 Main Unit with a height of 1.5U and act as one RBS node.

The DUL stabilizes the clock signal extracted from the transport network connection or optional external GPS equipment and uses it to synchronize the RBS.

The DUL provides:

- Full IP connectivity
- A gigabit Ethernet transport network interface
2.2 Remote Radio Unit

2.2.1 RRUW & RRUS

RRUW and RRUS are designed to be installed close to the antennas, and can be either wall or pole mounted. The RRUW has got WCDMA capability. RRUS is Multi Standard Radio, MSR, capable. This means that RRUS is capable of running GSM, WCDMA and LTE on the same RRU HW. Standard can be changed by software reload.

The RRUS is HW prepared for running mixed mode configurations, i.e. to run 2 standards simultaneously. The standards supported in each frequency variant of RRUS depend on which frequencies each standard is defined in 3GPP. A table with standards supported for each frequency is found in chapter 5.1.

For GSM and LTE, up to 12 RRUS can be connected to one MU. For WCDMA, up to 12 RRUW or RRUS can be connected to the same MU.

The RRUW & RRUS sustainable average output power is 60 W, for very large coverage and high capacity requirements. Dual band configurations are also supported by connecting RRUW or RRUS for different frequency bands to the same MU.

The RRUW & RRUS contain most of the radio processing hardware. The main parts of the RRU are the:

- Transceiver (TRX)
- Transmitter (TX) amplification
- Transmitter/Receiver (TX/RX) duplexing
- TX/RX filtering
- Voltage Standing Wave Ratio (VSWR) support
- ASC, TMA & RET support
- Optical interface
All connections are located at the bottom of the RRUW & RRUS. TMA or ASC are normally not needed when the RRU is mounted near the antenna. Still to maximize the flexibility at site RRUW & RRUS has support for ASC, TMA and Remote Electrical Tilt (RET).

2.2.2 RRU22

Figure 7, Remote Radio Unit (RRU22 20W & 40W)

The RRU22 are WCDMA capable and designed to be installed close to the antennas, either wall or pole mounted. Up to six RRU22 can be connected to the same MU to match any site type.

Different types of RRU22 are available with respect to frequencies and output power (20 or 40 W). It is possible to mix different RRU types in the same configuration. Dual band configurations are supported by connecting RRU for different frequency bands to the same MU.

The RRU contain most of the radio processing hardware. The main parts of the RRU are the:

- Transceiver (TRX)
- Transmitter (TX) amplification
- Transmitter/Receiver (TX/RX) duplexing
- TX/RX filtering
- Voltage Standing Wave Ratio (VSWR) support (40W)
- ASC, TMA & RET support (see table below)
- Optical interface

All connections are located at the bottom of the RRU.

TMA or ASC are normally not needed when the RRU is mounted near the antenna. Some of the RRU types however have support for ASC, TMA, RET and RET Interface Unit (RIU). The compatibility for the different RRU is presented in the table below.
2.3 Optical Interface Link

The RRU are connected to the MU through optical fiber cables. The length between the RBS 6601 MU and a RRUW or RRUS can be as long as up to 40 km.

The units can be connected to each other in several different ways depending on the site setup. The RBS 6601 supports:

- Star connection of the RRU, where each RRU is connected to the MU.
- RRUW & RRUS support cascade connections, where only one fiber cable is connected between the MU and one of the RRU. The other RRU are then connected to each other. This solution reduces the length of the optical fiber cable needed and can be used in multiple applications when the RRU are located far away from the MU.
- The RRU22 can be connected as the last RRU in a RRU cascade chain.

2.4 Site Solutions

2.4.1 Support Alarm Unit

The optional Site Alarm Unit (SAU) monitors and controls customer equipment. The SAU can handle up to 32 external alarms and four output control ports.

2.4.2 GPS

The RBS can be optionally connected to a GPS unit, which is used for synchronization of the RBS.

For more Main Remote site solution information please see the Main Remote site installation document.
3 Applications for RBS 6601

The RBS 6601 offers a wide spectrum of indoor applications. It is well suited for medium- to large capacity needs and is easy and flexible to set up.

3.1 Metropolitan Indoor Site

![Metropolitan Indoor Site](image)

The RBS 6601 is perfectly suited for metropolitan locations, with medium to large capacity needs and requirements for low power consumption. The small subunits are ideal for sites where access is limited or when site installation would result in an undesirable level of disturbance, as the included units can be carried using elevators or stairwells by hand.

The RRUs are mounted close to the antennas and the MU can be installed in an existing 19-inch rack or wall-mounting kit in an equipment room.
3.2 Suburban Shelter Site

The RBS 6601 is a perfect solution for achieving coverage and capacity in suburban environments. The Main Remote RBS 6601 provides wide area coverage where expansion can be implemented in a cost efficient way.

Radio sites in remote areas with limited access to power infrastructure can benefit from the Main Remote RBS 6601, since it offers low power consumption and high efficiency at the same time.

The MU can be installed in an existing 19” rack in a small shelter below the tower, and each RRU is installed close to the antennas in the tower top.
3.3 Highway Coverage Site

Cost-effective coverage and capacity, low power consumption, and simplified civil works make the RBS 6601 an ideal choice for highway coverage sites. The RRU can be spread out along the highway where they easily can be mounted on roadside poles, with negligible footprints, to minimize the interference on the surroundings. The MU is mounted in a shelter with a 19” rack.
3.4 In-building Coverage Solution

Using the RRU as a driver and connected to a Distributed Antenna System (DAS), the RBS 6601 is a good candidate when deploying in-building coverage. The possibility to spread out the RRU result in that one RBS can provide several buildings with exclusively tailored coverage.

This solution can preferable be deployed in locations such as shopping centers, train stations and sport arenas.
4 Configurations

4.1 Radio Configurations

The RRU22 is a WCDMA capable radio unit.

<table>
<thead>
<tr>
<th>RRU22 Configuration</th>
<th>Bandwidth</th>
<th>Technology</th>
<th>Output Power*</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCDMA</td>
<td>2 carriers</td>
<td>MCPA</td>
<td>20/40 W</td>
</tr>
</tbody>
</table>

The RRUW is a WCDMA capable radio unit.

<table>
<thead>
<tr>
<th>RRUW Configuration</th>
<th>Bandwidth</th>
<th>Technology</th>
<th>Output Power*</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCDMA</td>
<td>4 carriers</td>
<td>MCPA</td>
<td>20/40/60 W</td>
</tr>
</tbody>
</table>

The RRUS is a multi-standard unit and can amplify two standards simultaneously.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Bandwidth</th>
<th>Technology</th>
<th>Output Power*</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSM High capacity</td>
<td>4 TRXs</td>
<td>MCPA</td>
<td>20/40/60 W</td>
</tr>
<tr>
<td>WCDMA</td>
<td>4 carriers</td>
<td>MCPA</td>
<td>20/40/60 W</td>
</tr>
<tr>
<td>LTE</td>
<td>20 MHz</td>
<td>MCPA</td>
<td>20/40/60 W</td>
</tr>
</tbody>
</table>

* Output power from the antenna reference point. The output power and number of cell carriers/bandwidth for RBS with RRUW or RRUS are set by use of HW activation codes.

For radio performance information please see RBS 6000 Radio Performance and RBS 3000 Radio Performance (for RRU22) in the Product Catalogue.

4.1.1 GSM with MCPA

Example configurations

<table>
<thead>
<tr>
<th>Configuration **</th>
<th>Number of RRUS</th>
<th>Output power per TRX*</th>
</tr>
</thead>
<tbody>
<tr>
<td>3×4</td>
<td>3</td>
<td>20 W</td>
</tr>
<tr>
<td>3×8</td>
<td>6</td>
<td>20 W</td>
</tr>
<tr>
<td>6×4</td>
<td>6</td>
<td>20 W</td>
</tr>
</tbody>
</table>

* Configured nominal output power.

** In order to run 4 carriers @ 20W per RRUS, GSM BSS features are needed. See 45/221 04 – FGC 101 912 “GSM MCPA Intelligent Power Management” for more information.

Asymmetrical configurations of sectors and TRXs are supported.
4.1.2 GSM Dualband with MCPA

Example configurations

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Number of Radio Units</th>
<th>Output Power per TRX</th>
</tr>
</thead>
<tbody>
<tr>
<td>3×4 I 3×4</td>
<td>3 I 3</td>
<td>20 W / 43 dBm</td>
</tr>
</tbody>
</table>

4.1.3 WCDMA

Example configurations with RRUW or RRUS

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Number of Radio Units</th>
<th>Output Power per Cell Carrier (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3×1</td>
<td>3</td>
<td>20 / 40 / 60</td>
</tr>
<tr>
<td>3×1 MIMO</td>
<td>6</td>
<td>20+20 / 40+40 / 60+60</td>
</tr>
<tr>
<td>3×2</td>
<td>3</td>
<td>10 / 20 / 30</td>
</tr>
<tr>
<td>3×2</td>
<td>6</td>
<td>20 / 40 / 60</td>
</tr>
<tr>
<td>3×2 MIMO</td>
<td>6</td>
<td>10+10 / 20+20 / 30+30</td>
</tr>
<tr>
<td>3×3</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>3×3 MIMO</td>
<td>6</td>
<td>20+20</td>
</tr>
<tr>
<td>3×4</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>3×4</td>
<td>6</td>
<td>20 / 30</td>
</tr>
<tr>
<td>3×4 MIMO</td>
<td>6</td>
<td>15+15</td>
</tr>
<tr>
<td>6×1</td>
<td>6</td>
<td>20 / 40 / 60</td>
</tr>
<tr>
<td>6×2</td>
<td>6</td>
<td>10 / 20 / 30</td>
</tr>
</tbody>
</table>

Asymmetric configuration of sectors and TRXs is also supported. MIMO: e.g. 20+20 means 20 W per TX branch.

For examples of configurations with RRU22 please see RBS 3418 Product Description.

4.1.4 WCDMA Dualband

This table shows example of dualband configurations with the 1900 and 850 MHz frequency bands.

Example configurations with RRUW or RRUS

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Number of Radio Units</th>
<th>Output Power per Cell Carrier (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3×1 I 3×1</td>
<td>3 I 3</td>
<td>20 / 40 / 60</td>
</tr>
<tr>
<td>3×1 I 3×2</td>
<td>3 I 3</td>
<td>20 / 40 / 60</td>
</tr>
<tr>
<td>3×2 I 3×2</td>
<td>3 I 3</td>
<td>10 / 20 / 30</td>
</tr>
</tbody>
</table>
4.1.5 LTE

Example configurations

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Number of Radio Units</th>
<th>Output power (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3×20 MHz</td>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td>3×20 MHz MIMO</td>
<td>6</td>
<td>60 + 60</td>
</tr>
<tr>
<td>6×20 MHz</td>
<td>6</td>
<td>60</td>
</tr>
</tbody>
</table>

4.1.6 LTE Dualband

Example configurations

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Number of Radio Units</th>
<th>Output power (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3×20 MHz</td>
<td>3×20 MHz</td>
<td>3</td>
</tr>
</tbody>
</table>
4.2 Digital Unit Configurations

4.2.1 GSM

<table>
<thead>
<tr>
<th>Configuration</th>
<th>DUG 20</th>
<th>2*DUG 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRX</td>
<td>12</td>
<td>24</td>
</tr>
</tbody>
</table>

4.2.2 WCDMA

<table>
<thead>
<tr>
<th>Configuration</th>
<th>DUW 10</th>
<th>DUW 20</th>
<th>DUW 30</th>
<th>2*DUW 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell carriers</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Channel Elements, (Downlink/Uplink)</td>
<td>128/128</td>
<td>384/384</td>
<td>768/512</td>
<td>1536/1024</td>
</tr>
<tr>
<td>DL Peak Throughput (Mbps)</td>
<td>42</td>
<td>126</td>
<td>252</td>
<td>504</td>
</tr>
<tr>
<td>UL Peak Throughput (Mbps)</td>
<td>12</td>
<td>36</td>
<td>48</td>
<td>96</td>
</tr>
</tbody>
</table>

4.2.3 LTE

<table>
<thead>
<tr>
<th>Configuration</th>
<th>DUL 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL Peak Throughput (Mbps)</td>
<td>173</td>
</tr>
<tr>
<td>UL Peak Throughput (Mbps)</td>
<td>56</td>
</tr>
<tr>
<td>Number of users</td>
<td>1000</td>
</tr>
</tbody>
</table>

4.2.4 Transport Network Interfaces

<table>
<thead>
<tr>
<th>Digital Unit</th>
<th>Max # of DU in MU</th>
<th>E1/T1</th>
<th>E1/T1/J1</th>
<th>STM-1</th>
<th>100/1000 Base-T Ethernet</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUG 20</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUW 10/20/30</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>DUL 20</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional interfaces and transport network configurations are available as options.
5 Technical Specifications

5.1 RRU, Supported standards

RRU22

<table>
<thead>
<tr>
<th>Frequency</th>
<th>WCDMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>800 (B5)</td>
<td>x</td>
</tr>
<tr>
<td>900E (B8)</td>
<td>x</td>
</tr>
<tr>
<td>1700/2100 (B4)</td>
<td>x</td>
</tr>
<tr>
<td>1700/1800 (B9)</td>
<td>x</td>
</tr>
<tr>
<td>1900 (B2)</td>
<td>x</td>
</tr>
<tr>
<td>2100 (B1)</td>
<td>x</td>
</tr>
</tbody>
</table>

RRUW

<table>
<thead>
<tr>
<th>Frequency</th>
<th>WCDMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>800 (B5)</td>
<td>x</td>
</tr>
<tr>
<td>1900 (B2)</td>
<td>x</td>
</tr>
<tr>
<td>2100 (B1)</td>
<td>x</td>
</tr>
</tbody>
</table>

RRUS

<table>
<thead>
<tr>
<th>Frequency</th>
<th>GSM</th>
<th>WCDMA</th>
<th>LTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>700 (B12)</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>800 (B5)</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>900P (B0)</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>900E (B8)</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>1700/2100 (B4)</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>1800 (B3)</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>1700/1800 (B9)</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>1900 (B2)</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2100 (B1)</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2600 (B7)</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
5.2 Power Options

<table>
<thead>
<tr>
<th>Unit</th>
<th>Nominal Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>MU</td>
<td>−48 VDC</td>
</tr>
<tr>
<td>RRU</td>
<td>−48 V DC / 100–250 V AC *</td>
</tr>
</tbody>
</table>

* AC option comes with AC/DC converter outside RRU.

For power consumption information please see RBS 6000 Power Consumption and battery backup dimensioning guideline in the Product Catalogue.

5.3 Dimensions

The dimensions presented below refer to RRUS without the optional sun shield.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Height</th>
<th>Width</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>MU (RBS 6601)</td>
<td>66 mm</td>
<td>482 mm</td>
<td>350 mm</td>
</tr>
<tr>
<td>RRU22 20W</td>
<td>410 mm</td>
<td>334 mm</td>
<td>176 mm</td>
</tr>
<tr>
<td>RRU22 40W</td>
<td>514 mm</td>
<td>334 mm</td>
<td>176 mm</td>
</tr>
<tr>
<td>RRUW & RRUS</td>
<td>600 mm</td>
<td>350 mm</td>
<td>112 mm</td>
</tr>
</tbody>
</table>

5.4 Weight

<table>
<thead>
<tr>
<th>Unit</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>MU (RBS 6601 with one DUG or DUL)</td>
<td>9 kg</td>
</tr>
<tr>
<td>MU (RBS 6601 with one DUW)</td>
<td>10.5 kg</td>
</tr>
<tr>
<td>RRU22 20W</td>
<td>19 kg (without Sunshield)</td>
</tr>
<tr>
<td>RRU22 40W</td>
<td>24 kg (without Sunshield)</td>
</tr>
<tr>
<td>RRUW & RRUS</td>
<td>20 kg (without Sunshield)</td>
</tr>
</tbody>
</table>
6 Environmental Capabilities

This section contains a brief overview of standards, type approval, and Electromagnetic Compatibility (EMC).

6.1 Safety Standards

In accordance with market requirements, the RBS 6000 complies with the following product safety standards and directives:

<table>
<thead>
<tr>
<th>Product Safety Compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code of Federal Regulation 21 CFR 1040.10 and 1040.11</td>
</tr>
<tr>
<td>EN 60 950-1/IEC 60 950-1:2001 and IEC 60 950:1999</td>
</tr>
<tr>
<td>EN 60 215/IEC 60 215:1987</td>
</tr>
<tr>
<td>ANSI/UL 60 950-1/CSA C22.2 No. 60 950-1-03</td>
</tr>
<tr>
<td>IEC 60 825-1/EN 60 825-1</td>
</tr>
</tbody>
</table>

6.2 Other Standards and Requirements

6.2.1 Electromagnetic Compatibility

The RBS complies with European Community requirements regarding EMC. The product is labeled with the CE mark in order to show compliance with the legal requirements.

6.2.2 Product Approval Standards

The RBS complies with European Community requirements regarding radio performance. The product is labeled with the CE mark in order to show compliance with the legal requirements.
6.2.3 Earthquake Resistance

The RBS 6601 Main Unit is designed to withstand exposure to seismic activity in accordance with test method IEC/EN 60 068-2-57. The table below shows the vibration resistance.

<table>
<thead>
<tr>
<th>Vibration Resistance</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal operation</td>
<td>Max. 0.02 m²/s³</td>
</tr>
<tr>
<td>Exceptional operation</td>
<td>Max. 0.08 m²/s³</td>
</tr>
<tr>
<td>Non-destructive</td>
<td>Max. 0.15 m²/s³</td>
</tr>
<tr>
<td>Shock</td>
<td>Max. 30 m/s²</td>
</tr>
</tbody>
</table>

6.2.4 Acoustic Noise

<table>
<thead>
<tr>
<th>Unit</th>
<th>Temperature</th>
<th>Sound Power Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>RRU22 40 W</td>
<td>+40°C</td>
<td>< 43 dBA</td>
</tr>
<tr>
<td></td>
<td>Room temperature</td>
<td>< 38 dBA</td>
</tr>
</tbody>
</table>

RRU22 20W, RRUW & RRUS generates no acoustic noise.

6.2.5 Operational Requirements

This section describes the operational environment for the RBS 6601.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Temperature Range</th>
<th>Relative Humidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>MU</td>
<td>+5°C to +50°C</td>
<td>5–85%</td>
</tr>
<tr>
<td>RRU22 20W</td>
<td>-33°C to +50°C</td>
<td>5–100%</td>
</tr>
<tr>
<td>RRU22 40W</td>
<td>-33°C to +50°C</td>
<td>5–100%</td>
</tr>
<tr>
<td>RRUW & RRUS</td>
<td>-40°C to +55°C</td>
<td>5–100%</td>
</tr>
</tbody>
</table>
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternating Current</td>
</tr>
<tr>
<td>ACCU</td>
<td>AC Connection Unit</td>
</tr>
<tr>
<td>ASC</td>
<td>Antenna System Controller</td>
</tr>
<tr>
<td>ATM</td>
<td>Asynchronous Transfer Mode</td>
</tr>
<tr>
<td>CE</td>
<td>Channel Elements</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>DCCU</td>
<td>DC Connection Unit</td>
</tr>
<tr>
<td>DU</td>
<td>Digital Unit</td>
</tr>
<tr>
<td>EMC</td>
<td>Electromagnetic Compatibility</td>
</tr>
<tr>
<td>HSPA</td>
<td>High Speed Packet Access</td>
</tr>
<tr>
<td>GSM</td>
<td>Global System for Mobile communications</td>
</tr>
<tr>
<td>LTE</td>
<td>Long Term Evolution</td>
</tr>
<tr>
<td>MU</td>
<td>Main Unit</td>
</tr>
<tr>
<td>PDU</td>
<td>Power Distribution Unit</td>
</tr>
<tr>
<td>PSU</td>
<td>Power Supply Unit</td>
</tr>
<tr>
<td>RBS</td>
<td>Radio Base Station</td>
</tr>
<tr>
<td>RET</td>
<td>Remote Electrical Tilt</td>
</tr>
<tr>
<td>RRU</td>
<td>Radio Remote Unit</td>
</tr>
<tr>
<td>RU</td>
<td>Radio Unit</td>
</tr>
<tr>
<td>RX</td>
<td>Receiver</td>
</tr>
<tr>
<td>TMA</td>
<td>Tower Mounted Amplifier</td>
</tr>
<tr>
<td>VSWR</td>
<td>Voltage Standing Wave Ratio</td>
</tr>
<tr>
<td>WCDMA</td>
<td>Wideband Code Division Multiple Access</td>
</tr>
</tbody>
</table>